Liquid chromatography–mass spectrometry (LC-MS, or alternatively **HPLC-MS**) is an analytical tool that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry (MS). LC-MS is a powerful technique that has very high sensitivity and selectivity and so is useful in many applications.

Experiment

 LC-ESI-MS analysis: Liquid chromatography-mass spectrometry (LC-MS) as a widely used technique for determination of molecular weights of compounds/analytes separated by liquid chromatography in LC-MS system.

Data interpretation/analysis

It provides separation of compounds (Retention Time) and detection of compounds (as different adduct formation due to ESI source) by MS (provide molecular weight of compounds/analytes).

Basic information obtains by LC-MS data

- 1. How many number of compounds present in the sample?
- 2. What are their molecular weights?

Example-1

Table -1: Chromatographic retention time and detection of compound with adduct formation.

S.No.	RT	M.W.	ESI (+)		ESI (-)		
			$[M+H]^+$	$[M+NH_4]^+$	[M-H] ⁻	[M+CI]	[M+CH ₃ COO]
1	4.24	404	405	422	403	439	463
2	4.30	578	579	596	577	-	-
3	4.33	548	549	566	547	583	607
4	4.50	520	-	538	519	555	-
5	4.81	548	549	566	547	583	607
6	5.06	546	547	564	545	581	-
7	5.54	548	549	566	547	583	607

- 1. Note- On the basis of previously known compounds and their molecular weight information in literature (published paper on similar sample like plant/microbes/animals) user can predict the possible compounds present in sample.
- 2. After getting possibility from LC-MS data molecular weight information, user need MS/MS and LC-HRMS data to identify the compound detected in MS.
- 3. User should do thoroughly literature search so that maximum number of compounds can be identify in sample. Without literature support, LC-MS data analysis is not possible.
- 4. User can use ESI/APCI ion calculator to confirm molecular weight of compounds detected in LC-MS Run. http://plantmetabolome.cdri.res.in/public/frm AductIonCalc.aspx
- 5. MS/MS spectra library can be used for reference spectra. Like https://massbank.eu/MassBank, https://massbank.eu/MassBank, https://massbank.eu/massbank.
- 6. Data analysis is part of end user, it will not provide by SAIF